ЦЕНТРАЛЬНЫЙ ПУЛЬТ

Состав выходных данных и документов

Содержание

1. Перечень выходных документов	3
1.1. Экспорт данных	3
1.2. Экспорт свойств	3
1.3. Экспорт графиков	4
1.4. Экспорт отчётов по авариям	4
1.5. Экспорт виджетов типа "График"	4
1.6. Экспорт настроенных в стандартном виде дочерних элементов	4
1.7. Экспорт журнала пользовательских сессий	5
2. Перечень выходных данных	5
2.1. Данные проверки "Процесс по имени"	5
2.2. Данные проверки "Запрос в базу данных"	8
2.3. Данные проверки "SNMP Get-сенсор"	8
2.4. Данные проверки "SNMP Trap-сенсор"	8
2.5. Данные проверки "Выполнение программы/скрипта"	9
2.6. Данные проверки "Пинг-сенсор"	9
2.7. Данные проверки "Локальный порт"	10
2.8. Данные проверки "Удалённый порт"	11
2.9. Данные проверки "НТТР-запрос"	11
2.10. Данные проверки "ЈМХ-сенсор"	12
2.11. Данные проверки "MQTT-сенсор"	13
2.12. Данные проверки "FTP-сенсор"	13
2.13. Данные проверки "Бинарный протокол"	14
2.14. Данные проверки "WMI-сенсор"	14
2.15. Данные проверки "Конфигурационный файл/директория"	15
3. Перечень выходных сигналов	15

1. Перечень выходных документов

АС "Центральный Пульт" включает в себя перечень форматов электронной документации для экспорта данных в удобный для пользователя вид: Excel, CSV.

Для экспорта доступна следующая информация:

- данные,
- свойства,
- графики,
- отчеты по инцидентам,
- виджеты типа "График".

1.1. Экспорт данных

В виде подробной информации или окне информации об объекте или связи находится секция "Данные". Эта секция содержит таблицу с результатами выполняемой проверки.

Для экспорта полученных результатов мониторинга нужно нажать кнопку 🔯 – Экспорт в CSV – в заголовке секции.

Файл содержит аналогичное таблице данных наполнение. Количество и содержание столбцов зависит от выбранного типа проверки.

1.2. Экспорт свойств

В качестве объекта мониторинга может выступать физическое устройство (сервер, процессор, маршрутизатор), программный модуль (база данных, web-сервер), объект бизнес-процесса (услуга, платформа). Любой объект может иметь свойства, при помощи которых возможно добавлять описание, адреса, ссылки и другую полезную для администрирования информацию.

Свойство – текстовая информация в формате "имя - значение".

Экспорт свойств осуществляется через окно поиска и групповых операций. Для этого необходимо отметить нужные объекты, нажать кнопку отчёт и выбрать "Объекты и свойства". Информация выгружается в Excel-файл, который содержит:

- имена объектов,
- дату и время создания объектов,
- имена свойств,
- значения свойств,

• информацию о прикреплённой документации.

1.3. Экспорт графиков

Графики строятся автоматически на основании числовых значений из таблицы данных. Данные, отображённые на графике, можно экспортировать в CSV-файл. Для этого необходимо нажать кнопку - Экспорт в CSV - в заголовке графика.

CSV-файл содержит:

- дату и время поступления данных,
- значения параметров.

1.4. Экспорт отчётов по авариям

Авария (IT Incident) — это любое явление, выходящее за рамки штатной работы ITструктуры, прямо, косвенно или потенциально ведущее к остановке процессов системы или негативно отражающееся на качестве её функционирования.

В АС "Центральный Пульт" авария генерируется, если:

- объект переходит в одно из состояний, для которого задан уровень критичности аварии,
- выполняются условия генерации аварий.

Системой предусмотрено сохранение отчёта по авариям. Отчёт возможно получить как для активных (кнопка — Экспорт в Excel), так и для исторических (кнопка — Экспорт в CSV) аварий на странице с авариями (кнопка на панели режимов отображения).

1.5. Экспорт виджетов типа "График"

Стандартный вид — это отображение, которое предоставляет наиболее подробную информацию об объектах и связях между ними с точки зрения иерархии объектов.

Нажав кнопку — "Экспорт" — на панели "хлебных крошек" в стандартном виде и выбрав "Экспорт в Excel" возможно выгрузить данные по всем виджетам типа "График" дочерних объектов.

1.6. Экспорт настроенных в стандартном виде дочерних элементов

Стандартный вид — это отображение, которое предоставляет наиболее подробную информацию об объектах и связях между ними с точки зрения иерархии объектов.

Нажав кнопку — "Экспорт" — на панели "хлебных крошек" в стандартном виде и выбрав "Экспорт в PDF" возможно сгенерировать PDF-файл с отображением настроенных дочерних элементов.

1.7. Экспорт журнала пользовательских сессий

На странице журнала сессий (Конфигурация – Журнал сессий) доступна информация о пользовательских сессиях – время входа в систему, время выхода из системы, срок действия текущих сессий пользователей.

Кнопка PDF в правом верхнем углу экрана сохраняет журнал сессий за выбранный временной интервал в PDF-файл.

2. Перечень выходных данных

Поток выходной информации формируется из средств измерений. При помощи различных способов проверки возможно получить дополнительный набор выходных данных.

2.1. Данные проверки "Процесс по имени"

Этот тип проверки позволяет получить данные по процессу с указанным именем и/или их аргументами, запущенным в операционной системе.

После настройки условий мониторинга в случае успешного выполнения проверки в таблице данных отобразится следующая информация (Рис. 1):

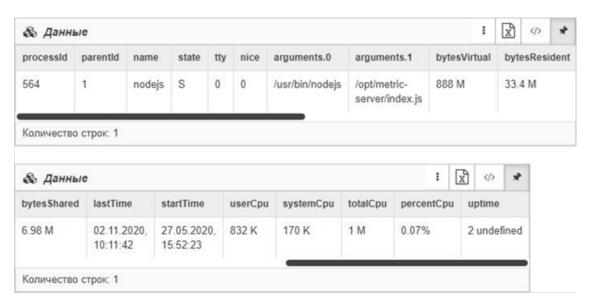


Рис. 1. Результат проверки "Процесс по имени"

Описание полей результата проверки "Процесс по имени":

Поле	Описание
arguments.xxx	Аргументы, с которыми был запущен данный процесс.
bytesResident	Показывает, сколько физической памяти использует процесс.
	Соответствует колонке "%МЕМ" утилит "ps" и "top" - процент использования оперативной памяти данным процессом.
bytesShared	Количество разделяемой памяти, которое используется процессом.
	Отображает количество памяти, которая потенциально может быть разделена с другими процессами.
bytesVirtual	Используемая виртуальная память или "виртуальный размер процесса".
	Показывает общее количество памяти, которое способна адресовать программа в данный момент времени.
lastTime	Время, когда последний раз процесс выполнялся на CPU.
name	Имя найденного процесса.
nice	Значение приоритета "nice" - приоритет, который пользователь хотел бы назначить процессу (от -20 до 19).
parentId	ID родительского процесса (PPID).
percentCpu	Количество CPU, используемое данным процессом.
processId	ID найденного процесса (PID).
startTime	Время, когда был запущен процесс.

Поле	Описание
state	Код состояния процесса:
	• D - uninterruptible sleep (usually IO) – процесс ожидает вводавывода (или другого недолгого события), непрерываемый;
	• I - is multi-threaded (using CLONE_THREAD, like NPTL pthreads do) - многопоточный процесс;
	• L – has pages locked into memory (for real-time and custom IO) – процесс использует страничную память;
	• N - low-priority (nice to other users) - процесс с низким приоритетом, получает ресурсы позже прочих;
	• R – running or runnable (on run queue) - процесс выполняется в данный момент или готов к выполнению (состояние готовности);
	• s - is the session leader - процесс является лидером сессии;
	• S – interruptible sleep (waiting for an event to complete) – процесс в состоянии ожидания (т.е. "спит" не менее 20 секунд);
	• T - stopped, either by a job control signal or because it is being traced – процесс остановлен (stopped) или трассируется отладчиком;
	• W - paging (not valid since the 2.6.xx kernel) – процесс в стадии "paging", не актуально для ОС с kernel старше 2.6;
	• X – dead (should never be seen) – процесс в состоянии завершения;
	• Z – defunct ("zombie") process, terminated but not reaped by its parent - завкршившийся процесс, код возврата которого пока не считан родителем;
	• < - high-priority (not nice to other users) - процесс с высоким приоритетом, получает ресурсы раньше прочих;
	• + - is in the foreground process group - процесс запущен в foreground-режиме.
systemCpu	Время CPU, занятое системой.
totalCpu	Общее процессорное время, занятое процессом (сумма userCpu и systemCpu).
tty	Терминал, с которым связан данный процесс.
uptime	Время, в течение которого процесс находится в работе.
userCpu	Время CPU, которое занял пользователь.

2.2. Данные проверки "Запрос в базу данных"

Этот тип проверки осуществляет выборку из баз данных:

- MySQL (4.1 5.7),
- MS SQL (Microsoft SQL Server 2005/2008/2008 R2/2012/2014),
- PostgreSQL (9.x),
- Oracle (9.0 11.2),
- · HP Vertica,

по параметрам, указанным при настройке мониторинга в поле "SQL-запрос".

2.3. Данные проверки "SNMP Get-сенсор"

Этот тип проверки позволяет получить значение переменной с соответствующим ей описанием.

После настройки условий мониторинга в случае успешного выполнения проверки в таблице данных отобразится следующая информация (Рис. 2):

Рис. 2. Результат проверки "SNMP GET-сенсор"

Описание полей результата проверки "SNMP GET-сенсор":

Поле	Описание
Номер запрошенного OID	Значение запрошенного SNMP-объекта.

2.4. Данные проверки "SNMP Trap-сенсор"

Этот тип проверки позволяет получить информацию о произошедшем на объекте событии.

После настройки условий мониторинга в случае успешного выполнения проверки принимаемые данные будут отображаться в Журнале событий (Рис. 3):

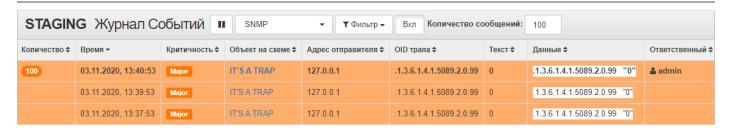


Рис. 3. Журнал событий

2.5. Данные проверки "Выполнение программы/скрипта"

Этот тип проверки осуществляет вызов исполняемого файла и возвращает его вывод из потоков **stdout**, **stderr**.

Данные возвращаются в следующих форматах:

- текстовый;
- числовой;
- JSON.

2.6. Данные проверки "Пинг-сенсор"

Этот тип проверки осуществляет проверку объекта или связи командой "Ping" по указанному IP-адресу или имени хоста.

После настройки условий мониторинга в случае успешного выполнения проверки в таблице данных отобразится следующая информация (Рис. 4):

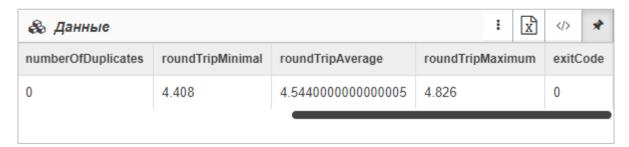


Рис. 4. Результат проверки "Пинг-сенсор"

Описание полей результата проверки "Пинг-сенсор":

Поле	Описание
packetsTransmitted	Количество переданных пакетов.
packetsReceived	Количество полученных пакетов.
packetLossPercentile	Процентиль потерь пакетов.
numberOfErrors	Количество ошибок.
numberOfDupl icates	Количество дубликатов.
roundTripMinimal	Минимальное время приёма-передачи (round-trip time).
roundTripAverage	Среднее время приёма-передачи (round-trip time).
roundTripMaximum	Максимальное время приёма-передачи (round-trip time).
exitCode	Код завершения выполнения проверки (0 - без ошибок).

2.7. Данные проверки "Локальный порт"

Этот тип проверки проверяет доступность указанного локального порта.

После настройки условий мониторинга в случае успешного выполнения проверки в таблице данных отобразится следующая информация (Рис. 5):

Рис. 5. Результат проверки "Локальный порт"

Описание полей результата проверки "Локальный порт":

Поле	Описание
success	Результат проверки:
	• true - порт доступен; • false - порт недоступен.
listenAddress	Адрес, на котором используется проверяемый порт.
processId	ID процесса, который использует проверяемый порт.

2.8. Данные проверки "Удалённый порт"

Этот тип проверки проверяет доступность указанного удалённого порта.

После настройки условий мониторинга в случае успешного выполнения проверки в таблице данных отобразится следующая информация (Рис. 6):

Рис. 6. Результат проверки "Удалённый порт"

Описание полей результата проверки "Удалённый порт":

Поле	Описание
success	Результат проверки:
	• true - порт доступен; • false - порт недоступен.
errorMessage	Сообщения об ошибках выполнения проверки или о причинах недоступности проверяемого порта.

2.9. Данные проверки "НТТР-запрос"

Этот тип проверки позволяет выполнять следующие виды НТТР-запросов:

GET, POST, HEAD, PUT, PATCH и DELETE.

После настройки условий мониторинга в случае успешного выполнения проверки в таблице данных отобразится следующая информация (Рис. 7):

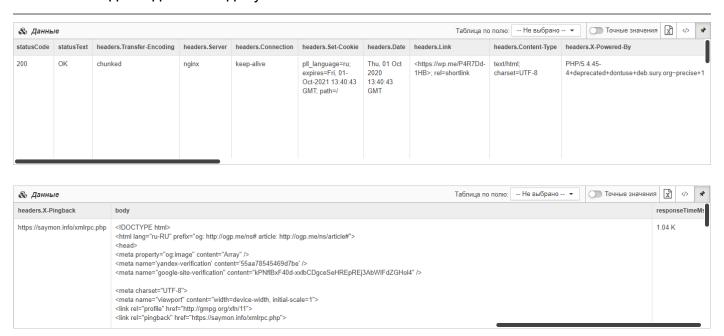


Рис. 7. Результат проверки "НТТР-запрос"

Описание полей результата проверки "НТТР-запрос":

Поле	Описание
statusCode	Код состояния НТТР.
statusText	Текстовая интерпретация кода состояния HTTP.
headers.Xxx	Заголовки ответа.
body	Тело ответа.
body.Yyy	Тело ответа, разбитое на отдельные поля, если в ответе вернулись данные в форматах JSON или XML.
responseTimeMs	Время отклика ресурса в миллисекундах.

2.10. Данные проверки "ЈМХ-сенсор"

Этот тип проверки позволяет получить данные о работе Java-приложений, поддерживающих JMX – Java Management Extensions:

- просмотр конфигурации приложения;
- сбор и публикация статистических данных о работе приложения;
- оповещение о смене состояний и ошибках в работе приложений.

Набор метрик индивидуален и зависит от проверяемого Java-приложения.

2.11. Данные проверки "MQTT-сенсор"

Этот тип проверки позволяет подписаться на топик MQTT-брокера и получать данные от устройств, поддерживающих работу по протоколу MQTT.

После настройки условий мониторинга в случае успешного выполнения проверки в таблице данных отобразится следующая информация (Рис. 8):

Рис. 8. Результат проверки "MQTT-сенсор"

Описание полей результата проверки "MQTT-сенсор":

Поле	Описание
topic	MQTT-topic, указанный в настройках сенсора.
message.X.Y	Сообщение, полученное от MQTT-брокера.

2.12. Данные проверки "FTP-сенсор"

Этот тип проверки позволяет подключаться к FTP-директориям и получать данные о размещённых в них файлах и папках.

После настройки условий мониторинга в случае успешного выполнения проверки в таблице данных отобразится следующая информация (Рис. 9):

Рис. 9. Результат проверки "FTP-сенсор"

Описание полей результата проверки "FTP-сенсор":

Поле	Описание
count	Количество файлов в указанной директории.
totalSize	Размер указанной директории или суммарный размер всех вложенных директорий с файлами, если режим "Рассчитывать размер директорий" включен.

Поле	Описание
maxSize	Максимальный размер файла в директории.
minSize	Минимальный размер файла в директории.
firstModified	Дата первого изменения директории.
lastModified	Дата последнего изменения директории.
content.names.X	Имена файлов, вложенных в директории, если включен режим "Отображать имена файлов".

2.13. Данные проверки "Бинарный протокол"

Этот тип проверки позволяет отправлять бинарные данные на указанный при настройке мониторинга хост/порт, получать ответ в бинарном виде и трансформировать их в удобный для пользователя формат по заданным правилам.

После настройки условий мониторинга в случае успешного выполнения проверки в таблице данных отобразится следующая информация (Рис. 10):

Рис. 10. Результат проверки "Бинарный протокол"

Описание полей результата проверки "Бинарный протокол":

Поле	Описание
metricaX	Имя метрики, указанное в "Параметрах разбора".

2.14. Данные проверки "WMI-сенсор"

Этот тип проверки позволяет собирать информацию на операционных системах семейства Windows о классах WMI из указанного пространства имён с технологии "Windows Management Instrumentation".

После настройки условий мониторинга в случае успешного выполнения проверки в

таблице данных отобразится следующая информация (Рис. 11):

Рис. 11. Результат проверки "WMI-сенсор"

Описание полей результата проверки "WMI-сенсор":

Поле	Описание
Поля с названиями свойств	Имена свойств запрошенного WMI-объекта и их
запрошенного объекта	значения.

2.15. Данные проверки "Конфигурационный файл/директория"

Этот тип проверки позволяет наблюдать за изменением файлов и папок.

После успешного выполнения проверки в секции "Изменения конфигурации" появятся дата, время, история изменений, и содержимое файла/директории.

3. Перечень выходных сигналов

При переходе объектов в определенные состояния система может:

- отправлять email -уведомления;
- автоматически запускать программу или скрипт с параметрами;
- отправлять сообщения в Telegram;
- отправлять SMS;
- совершать голосовые вызовы;
- показывать визуальное уведомление в браузере, сопровождающееся звуком.

При одновременной или частой смене состояний система может отправлять сгруппированное уведомление о всех событиях, произошедших за определённый период времени, который настраивается администратором системы.

Формирование уведомлений доступно в разделе конфигурации "Шаблоны уведомлений" при помощи базовых переменных:

- entityName имя элемента,
- entityId ID элемента,
- entityType тип элемента (объект/связь),

- entityUrl URL элемента,
- stateName имя состояния,
- stateData информация о состоянии,
- changedStateText текст о переходе в состояние:
 - "перешёл в состояние" для объектов;
 - "перешла в состояние" для связей;
- hasRootCause указывает на смену состояния, вызванную дочерним объектом:
 - возвращает true, если новое состояние унаследовано от дочернего элемента;
 - возвращает false, если состояние изменилось по другой причине;
- rootCauseEntityName имя объекта-первопричины,
- rootCauseEntityUrl URL объекта-первопричины,
- rootCauseEntityId ID объекта-первопричины,
- condition информация о сработавшем условии,
- conditionDescription описание условия, вызвавшего переход,
- eventTime время наступления события,
- breadcrumbs полный путь в иерархии к элементу, по которому поступает уведомление.

Внутри переменной "breadcrumbs" также можно использовать переменные:

- entityName,
- entityId,
- entityUrl.

Параметры переменной "breadcrumbs" (по умолчанию значения параметров равны 0):

- multi-break остановка на мультиродителе (0 нет, 1 да),
- depth количество отображаемых уровней (0 нет ограничения),
- length максимальное суммарное количество символов (0 нет ограничения).

Переменные группового уведомления:

- eventsCount количество событий,
- uniqueCount количество уникальных событий,
- fromTime время наступления первого события из списка,
- toTime время наступления последнего события из списка.

Для email-уведомлений предусмотрены следующие дополнительные переменные:

- stateLabel цветная метка состояния,
- entityLink имя-ссылка на элемент,
- rootCauseEntityLink имя-ссылка на дочерний элемент-первопричину,
- goToObjectButton кнопка перехода к элементу.